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Abstract

We study the gauge covariance of the fermion propagator in Maxwell–Chern–
Simons planar quantum electrodynamics (QED3) considering four-component
spinors with parity-even and parity-odd mass terms for both fermions and
photons. Starting with its tree-level expression in the Landau gauge, we
derive a non-perturbative expression for this propagator in an arbitrary covariant
gauge by means of its Landau–Khalatnikov–Fradkin transformation (LKFT).
We compare our findings in the weak coupling regime with the direct one-loop
calculation of the two-point Green function and observe perfect agreement
up to a gauge-independent term. We also reproduce results derived in earlier
works as special cases of our findings.

PACS numbers: 11.15.Tk, 11.30.Er, 12.20.−m

1. Introduction

Gauge symmetry is the cornerstone of our modern understanding of fundamental interactions.
At the level of field equations, such a symmetry is reflected in different relations among the
Green’s functions of a given quantum field theory. In quantum electrodynamics (QED), for
example, Green’s functions verify Ward–Green–Takahashi identities [1], which relate (n + 1)-
point functions with the n-point ones. This set of identities can be enlarged by transforming also
the gauge fixing parameter ξ to arrive at the Nielsen identities (NI) [2]. One advantage of these
identities over the conventional Ward identities is that ∂/∂ξ becomes part of the new relations
involving Green’s functions. This fact was exploited in [3] to prove the gauge independence of
some physical observables related to two-point Green’s functions at the one-loop level and to
all orders in perturbation theory. A different set of relations, which specify the transformation
of Green’s functions under a variation of gauge, carries the name of Landau–Khalatnikov–
Fradkin transformations (LKFTs) in QED [4]. LKFTs are non-perturbative in nature, and
hence have the potential of playing an important role in understanding the apparent problems
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of gauge invariance in the strong coupling studies of Schwinger–Dyson equations (SDEs) [5].
In this context, the direct implementation of LKFTs in SDEs studies has already been reported
[6, 7]. Gauge dependence studies of the SDEs must ensure that these transformations for
the Green’s functions involved are satisfied [7] in order to obtain meaningful results. Rules
governing LKFTs are better described in coordinate space. It is primarily for this reason that
some earlier works on its implementation in the study of the fermion propagator were carried
out in the coordinate space [8]. Momentum space calculations are more demanding, owing
to the complications induced by Fourier transforms. These difficulties are reflected in [9, 10]
where the non-perturbative fermion propagator was obtained starting from a perturbative one
in the Landau gauge in QED in three and four spacetime dimensions.

In this paper, we study QED in three spacetime dimensions (QED3) in its general form,
taking into account parity conserving and violating mass terms for both photons and fermions.
Specific cases of the underlying Lagrangian have found many useful applications both in
condensed matter physics, particularly in high-Tc superconductivity and the quantum Hall
effect [11–16], as well as in high-energy physics, mostly connected to the study of dynamical
chiral symmetry breaking and confinement, where QED3 provides a popular battleground for
lattice and continuum studies [17]. An interesting review of various dynamical effects in
(2+1)-dimensional theories with four-fermion interaction can be found in [18]. In all these
cases, it becomes a key issue to address the gauge covariance properties of Green’s functions.
We investigate the gauge structure of the fermion propagator in the light of the LKFTs. This
paper is organized as follows: In the following section, considering four-component spinors,
we describe the QED3 Lagrangian with parity conserving and violating mass terms. It leads to
a general fermion propagator which we write in a form suitable to study its gauge covariance
relations. In section 3, we introduce the LKFT for the fermion propagator and derive the
non-perturbative expression for the two-point function under consideration. We review some
limiting cases of our findings, including the massless case, the parity conserving case and
the weak coupling expansion, which is compared against the one-loop calculation of the
fermion propagator. It is well known that the parity violation in the fermion sector radiatively
induces a Maxwell–Chern–Simons mass term for the photon. In section 4, we extend our
study to include this case. At the end, we present our conclusions in section 5.

2. Fermion propagator

As compared with its four-dimensional counterpart, only three Dirac matrices are required to
describe the dynamics of planar fermions. Therefore, one can choose to work with two- or
four-component spinors. Correspondingly, an irreducible or reducible representation for the
γμ-matrices would respectively be used. A discussion on the symmetries of the fermionic
Lagrangian with different representations of Dirac matrices can be found in [16, 19]. In this
paper, we work with four-component spinors and thus with a 4×4 representation for the Dirac
matrices. We choose to work in Euclidean space, where the Dirac matrices satisfy the Clifford
algebra {γμ, γν} = −2δμν , a realization of which is given by

γ0 ≡
(−iσ3 0

0 iσ3

)
, γ1 ≡

(
iσ1 0
0 −iσ1

)
, γ2 ≡

(
iσ2 0
0 −iσ2

)
,

and

γ3 ≡
(

0 I

I 0

)
, γ5 ≡ γ0γ1γ2γ3 =

(
0 −I

I 0

)
,

where σi, i = 1, 2, 3 are the Pauli matrices and I the 2 × 2 identity matrix. Note that once we
have selected a set of matrices to write the Dirac equation, say {γ0, γ1, γ2}, two anti-commuting
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gamma matrices, namely, γ3 and γ5 remain unused, leading us to define two types of chiral-like
transformations: ψ → eiαγ3ψ and ψ → eiαγ5ψ. Consequently, there exist two types of mass
terms for fermions, the ordinary meψ̄ψ and the moψ̄τψ with τ = 1

2 [γ3, γ5] = diag(I,−I ),
sometimes referred to as the Haldane mass term. The former violates chirality, whilst the later
is invariant under chiral transformations. Defining parity so that it corresponds to the inversion
of only one spatial axis (preserving its discrete nature), we can represent parity transformation
by P = −iγ5γ1. We thus see that meψ̄ψ is parity invariant but moψ̄τψ is not. This would
justify the use of subscripts e and o for parity-even and parity-odd quantities throughout the
paper. We shall be working with the Lagrangian

L = ψ̄(i �∂ + e �A − me − τmo)ψ − 1

4
FμνFμν − 1

2ξ
(∂μAμ)2, (1)

where the quantities carry their usual meaning. There are many planar condensed matter
models in which the low-energy sector can be written as this effective form of QED3, for
which the physical origin of the masses depends on the underlying system [11]: d-wave
cuprate superconductors [12], d-density-wave states [13], layered graphite [14], including
graphene in the massless version [15] and a special form of the integer quantum Hall effect
without Landau levels [16]. Chiral symmetry breaking and confinement for particular forms
of this Lagrangian [17] and dynamical effects of four-fermion interactions in similar models
[18] have also been considered. The inverse fermion propagator in this case takes the form

S−1
F (p; ξ) = Ae(p; ξ) �p + Ao(p; ξ)τ �p − Be(p; ξ) − Bo(p; ξ)τ. (2)

We explicitly label the propagator with the covariant gauge parameter ξ as we would be
interested in its expression in different gauges. The bare propagator corresponds to A(0)

e = 1,

A(0)
o = 0, B(0)

e = me,B
(0)
o = mo. In coordinate space, we have that

S−1
F (x; ξ) = Xe(x; ξ) �x + Xo(x; ξ)τ �x − Ye(x; ξ) − Yo(x; ξ)τ. (3)

Rather than working with parity eigenstates, we find it convenient to work in a chiral
basis. For this purpose, we introduce the chiral projectors χ± = (1 ± τ)/2 which have the
properties χ2

± = χ±, χ+χ− = 0, χ+ + χ− = 1 1. The right-handed ψ+ and left-handed ψ−
fermion fields are ψ± = χ±ψ , in such a fashion that the chiral decomposition of the fermion
propagator becomes

SF (p; ξ) = − A+(p; ξ) �p + B+(p; ξ)

A2
+(p; ξ)p2 + B2

+(p; ξ)
χ+ − A−(p; ξ) �p + B−(p; ξ)

A2−(p; ξ)p2 + B2−(p; ξ)
χ−

≡ −[
PV

+ (p; ξ) �p + PS
+ (p; ξ)

]
χ+ − [PV

− (p; ξ) �p + PS
−(p; ξ)]χ−, (4)

and analogously, in coordinate space

SF (x; ξ) = − X+(p; ξ) �x + Y+(x; ξ)

X2
+(x; ξ)x2 + Y 2

+ (x; ξ)
χ+ − X−(x; ξ) �x + Y−(x; ξ)

X2−(x; ξ)x2 + Y 2−(x; ξ)
χ−

≡ −[
X V

+ (x; ξ) �x + X S
+ (x; ξ)

]
χ+ − [X V

− (x; ξ) �x + X S
−(x; ξ)]χ−, (5)

where our notation is as follows: K± = Ke ± Ko for K = A,B,X, Y , while KV and KS ,
for K = P,X , stand for the vector and scalar parts of the right- and left-projections of the
fermion propagator, respectively. Obviously, propagators (4) and (5) are related through the
Fourier transforms

SF (p; ξ) =
∫

d3x e−ip·xSF (x; ξ), SF (x; ξ) =
∫

d3p

(2π)3
eip·xSF (p; ξ). (6)

From these definitions, we are ready to study the LKFT for the fermion propagator, which we
shall introduce in the following section, along with the strategy of its implementation for the
study of gauge covariance of the fermion propagator.
1 Further properties are shown in the appendix.
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3. LKFT and the non-perturbative fermion propagator

The LKFT relating the coordinate space fermion propagator in the Landau gauge to that in an
arbitrary covariant gauge in arbitrary spacetime dimensions d reads

SF (x; ξ) = SF (x; 0) e−i[d(0)−d(x)], (7)

where

d(x) = − iξ e2

16(π)d/2
(μx)4−d�

(
d

2
− 2

)
, (8)

μ being a mass scale introduced for dimensional purposes. Explicitly in three dimensions, the
LKFT is given by

SF (x; ξ) = e−axSF (x; 0) (9)

where a = αξ/2 and α = e2/(4π) as usual. With these definitions, we are ready to study
the gauge covariance of the fermion propagator from its LKFT. The strategy is as follows: (i)
Start from the bare propagator in momentum space in Landau gauge and Fourier transform it
to coordinate space. (ii) Apply the LKFT. (iii) Fourier transform it back to momentum space.
We shall proceed to carry out this exercise below. Considering the bare propagator in Landau
gauge, we have A

(0)
+ (p; 0) = A

(0)
− (p; 0) = 1 and B

(0)
± (p; 0) = me ± mo ≡ m±. Therefore

PS(0)
± (p; 0) = m±

p2 + m2±
, PV (0)

± (p; 0) = 1

p2 + m2±
. (10)

Performing the Fourier transforms, we find

X S
±(x; 0) = m±e−m±x

4πx
, X V

± (x; 0) = i(1 + m±x)e−m±x

4πx3
. (11)

The LKFT is straightforward to perform. It would merely shift the argument of the
exponentials in the above expressions by the amount −ax. Then we are only left with the
inverse Fourier transform, which leads to

PS
±(p; ξ) = m±

p2 + (a + m±)2

PV
± (p; ξ) = 1

p2

[
1 − m±(a + m±)

p2 + (a + m±)2
− aI (p, a + m±)

]
,

(12)

where we have defined

I (p,m) = 1

p
arctan

( p

m

)
. (13)

Expressions (12) yield the non-perturbative form of the fermion propagator in an
arbitrary covariant gauge. An important advantage of the LKFT over ordinary perturbative
calculation is that the weak coupling expansion of this transformation already fixes some of
the coefficients in the all order perturbative expansion of the fermion propagator (see, for
example, [9, 10, 20, 21]). It is easy to show that the coefficients of the terms of the form
αiξ i already get fixed in the all order perturbative expansion of the LKFT, starting from the
bare propagator, a fact that holds true in arbitrary spacetime dimensions, as pointed out in
[21]. Even more, if we had started with a O(αn) propagator, all the terms of the form αn+iξ i

would already get fixed, as well as those with higher powers of ξ at a given order in α after the
perturbative expansions of the results obtained on applying the corresponding LKFT. Below
we shall consider equation (12) in various limiting cases, for consistency checks.
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3.1. Massless case

In the massless case, me = mo = 0, the non-perturbative fermion propagator reduces to

PS
±massless(p; ξ) = 0, PV

±massless(p; ξ) = 1

p2
[1 − aI (p, a)] , (14)

which imply B±(p; ξ) = 0 and hence Be(p; ξ) = Bo(p; ξ) = 0, i.e, fermions remain massless
in all gauges. Furthermore, A+(p; ξ) = A−(p; ξ), such that Ao(p; ξ) = 0 and

Ae(p; ξ) = [1 − aI (p, a)]−1 , (15)

confirming the covariant form for the massless propagator dictated by the LKFT [9, 10].

3.2. The ordinary QED3 case

The ordinary, parity-conserving case was considered in [10]. It can be derived from our results
setting m0 = 0, which implies m± = me. Hence we straightforwardly see that PS

+ (p; ξ) =
PS

−(p; ξ) and PV
+ (p; ξ) = PV

− (p; ξ), which in turn imply PS
o (p; ξ) = PV

o (p; ξ) = 0 and thus
we only have non vanishing contribution from the even-parity part of the fermion propagator:

PS
e (p; ξ) = me

p2 + (a + me)2

PV
e (p; ξ) = 1

p2

[
1 − me(a + me)

p2 + (a + me)2
− aI (p, a + me)

]
.

(16)

A comparison against the results of [10] shows complete agreement in this case.

3.3. Weak coupling regime

Next, we take the weak coupling limit of equation (12) performing an expansion of these
expressions in powers of α, recalling that a = αξ/2. At O(α) we find

PS
±weak(p; ξ) = m±

p2 + m2±
− αξm2

±(
p2 + m2±

)2

PV
±weak(p; ξ) = 1

p2 + m2±
+

αξm±
(
m2

± − p2
)

2p2
(
p2 + m2±

)2 − αξ

2p2
I (p,m±).

(17)

As we have pointed out earlier, the non-perturbative expressions obtained from the LKFT
of the fermion propagator match perturbative results at the one-loop level up to a gauge-
independent term. In order to identify such a term, we need to calculate the one-loop
perturbative result of the propagator and compare against equation (17). For this purpose
it is better to work directly with the A± and B± functions, which at O(α) are obtained from

A
(1)
± (p; ξ) = 1 − 2πα

p2

∫
d3k

(2π)3
Tr

[�pγμS±(k; ξ)γν
(0)
μν (q)χ±

]
,

B
(1)
± (p; ξ) = m± − 2πα

∫
d3k

(2π)3
Tr

[
γμS±(k; ξ)γν

(0)
μν (q)χ±

]
,

(18)

where q = k − p and S±(k; ξ) = PV (0)
± (k; ξ) �k + PS(0)

± (k; ξ). Using the explicit form of the
bare photon propagator, i.e., (0)

μν (q; ξ) = (q2δμν + (ξ − 1)qμqν)/q
4, we find

A
(1)
± (p; ξ) = 1 − αξ

2π2p2

∫
d3k

(k2 + p2)(k · p) − 2k2p2

q4
(
k2 + m2±

) ,

B
(1)
± (p; ξ) = m± +

α(2 + ξ)m±
2π2

∫
d3k

1

q2
(
k2 + m2±

) .

(19)
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These expressions are similar to the one-loop calculation carried out for the parity-even
Lagrangian of QED3 in [22]. The integration readily yields

A
(1)
± (p; ξ) = 1 +

a

p2
[m± − (

m2
± − p2)I (p,m±)],

B
(1)
± (p; ξ) = m±[1 + α(ξ + 2)I (p,m±)].

(20)

From the above expressions we can reconstruct PS(1)
± and PV (1)

± , finding

PS(1)
± (p; ξ) = m±

p2 + m2±
− αξm2

±(
p2 + m2±

)2 +
2αm±

(
p2 − m2

±
)

(
p2 + m2±

)2 I (p,m±),

PV (1)
± (p; ξ) = 1

p2 + m2±
+

αξm±
(
m2

± − p2
)

2p2
(
p2 + m2±

)2 − αξ

2p2
I (p,m±) − 4αm2

±
p
(
p2 + m2±

)2 .

(21)

Comparing these results against those obtained from the LKFT, equation (17), we observe
perfect agreement up to gauge-independent terms, a difference allowed by the structure of
LKFTs. Note that in Lagrangian (1), only the term moψ̄τψ is parity odd. Such a term
would radiatively induce a Chern–Simons term into the Lagrangian, modifying the form of
the photon propagator. We study the extended Lagrangian in the following section.

4. Maxwell–Chern–Simons QED3

The fact that the parity-odd mass term in the fermion propagator radiatively induces a parity-
odd contribution into the vacuum polarization can be seen from the tensor structure of the
vacuum polarization �μν(q) at the one-loop level

�μν(q) = e2
∫

d3k

(2π)3
Tr[γμS(k, ξ)γνS(k + q; ξ)]

=
(

δμν − qμqν

q2

)
�e(q2) + εμνρqρ�

o(q2). (22)

The second term corresponds to a Chern–Simons interaction of the form

LCS = θ

4
εμνρAμFνρ, (23)

where θ = �o(q2 → 0). This term is parity non-invariant. Despite the fact that it is not
manifestly gauge invariant, under a gauge transformation, LCS changes by a total derivative
(see, for example, [23]), rendering the corresponding action gauge invariant. The parameter
θ induces a topological mass for the photons. Remarkably enough, Coleman and Hill [24]
demonstrated on very general grounds that this parameter receives no contribution from two-
and higher-loops. Thus, it is desirable that in the presence of the parity violating mass term
for the fermions in the Lagrangian, the Chern–Simons term should be considered as well. The
Maxwell–Chern–Simons QED3 Lagrangian in this case takes the form

L = ψ̄(i �∂ + e �A − me − τmo)ψ − 1

4
FμνFμν − 1

2ξ
(∂μAμ)2 +

θ

4
εμνρAμFνρ. (24)

This Lagrangian has been employed to describe the zero field quantum Hall effect for massive
Dirac fermions [16]. In that, the gauge invariant topological mass θ is found to be related to the
Hall conductivity. Whichever modification this parameter should induce in the perturbative
form of the fermion propagator, it certainly will not modify the gauge dependence we found in
the previous section. Thus equation (12) continues to be the same in the present case. In order

6
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to identify the role of the Chern–Simons term in the perturbative expansion of the fermion
propagator, we first note that the photon propagator associated with Lagrangian (24) takes the
form

(0)
μν (q; ξ) = 1

q2 + θ2

(
δμν − qμqν

q2

)
− εμνρqρθ

q2(q2 + θ2)
+ ξ

qμqν

q4
. (25)

Inserting this propagator into (18) and taking traces, we have

A
(1)
± (p; ξ) = 1 − αξ

2π2p2

∫
d3k

(k2 + p2)(k · p) − 2k2p2

q4
(
k2 + m2±

)
+

α

π2p2

∫
d3k

(k · q)(p · q)

q2(q2 + θ2)
(
k2 + m2±

)
∓ αθm±

π2p2

∫
d3k

(p · q)

q2(q2 + θ2)
(
k2 + m2±

) ,

B
(1)
± (p; ξ) = m± +

αξm±
2π2

∫
d3k

1

q2
(
k2 + m2±

)
+

αm±
π2

∫
d3k

1

(q2 + θ2)
(
k2 + m2±

)
∓ θα

π2

∫
d3k

(k · q)

q2(q2 + θ2)
(
k2 + m2±

) .

(26)

Using dimensional regularization, these integrals can be evaluated in a straightforward manner,
yielding

A
(1)
± (p; ξ) = 1 +

α

2p2θ2

{ (
θ2 − p2 − m2

±
) (

θ2 + p2 + m2
± ± 2m±θ

)
I (p, θ + m±)

+
[(

p2 + m2
±
)(

p2 + m2
± ± 2m±θ

)
+ ξθ2(p2 − m2

±
)]

I (p,m±)

+ m±θ2(ξ + 1 ∓ 2) − θ
(
p2 + m2

± + θ2)},
B

(1)
± (p; ξ) = m± +

α

θ

{[
2m±θ ± (p2 + m2

± + θ2)
]
I (p, θ + m±)

+
[
ξm±θ ∓ (

p2 + m2
±
)]

I (p,m±) ± θ
}
.

(27)

Some particular limits of these expressions are considered below.

4.1. Massless photons

As θ → 0, we observe that

A
(1)

±(θ→0)(p; ξ) = 1 +
a

p2
[m± − (

m2
± − p2)I (p,m±)]

− αθ

3p2

(
2 ± (3 ∓ 2)m2

±
p2 + m2±

+ 3m±I (p,m±)

)
,

B
(1)

±(θ→0)(p; ξ) = m± [1 + α(ξ + 2)I (p,m±)]

+ αθ

(
− (2 ∓ 1)m±

p2 + m2±
± I (p,m±)

)
.

(28)

A comparison against (20) reveals that we recover the ‘pure’ QED3 limit when photons are
massless, i.e, θ = 0.

7
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4.2. Massless fermions

In the absence of the Maxwell–Chern–Simons term, equation (20) reveals that if we start from
massless fermions, i.e., m± = 0, radiative corrections, being proportional to the bare mass, do
not alter their masslessness. However, for m± = 0 in the present case, we see from (27) that

B
(1)

±(m±=0)(p; ξ) = ±α

θ

[
−πp

2
+ θ + (p2 + θ2)I (p, θ)

]
, (29)

which readily implies Be(p; ξ) = 0, but Bo(p; ξ) ∝ α/θ . This implies that even starting with
massless fermions, the Maxwell–Chern–Simons term radiatively induces a parity violating
mass for them. In fact, we can see that in the Landau gauge, as θ → 0, the induced mass
function is

minduced
o (p; 0) = lim

θ→0

B
(1)

±(m±=0)(p; 0)

A
(1)

±(m±=0)(p; 0)
= αθπ

2p
, (30)

and would be zero if we turn off either the interactions, i.e., α = 0, or the Maxwell–Chern–
Simons mass, θ = 0. Such a statement, complementary to the Coleman–Hill theorem [24],
was first noted in [25], and stresses the need for including in the bare Lagrangian both the
Maxwell–Chern–Simons term and the Haldane mass term simultaneously, or none at all.

4.3. The ordinary QED3 case

The ordinary QED3 case is recovered by setting θ = mo = 0 in (27). This can be achieved in
two steps: first, from (28) we recover the pure QED3 results (20) by setting θ = 0. We then
arrive at (16) by setting mo = 0 in (20), as we have previously pointed out.

4.4. Gauge-dependent terms

In order to perform a comparison against the perturbative expansion of the LKFT results,
equation (17), it is convenient to return to the scalar and vector parts of the propagator. We
find that

PS
±(p; ξ) = m±

p2 + m2±
− αξm2

±(
p2 + m2±

)2

+
α

θ2
(
p2 + m2±

)2

{
θ

[
m±

(
p2 + m2

± + θ2) ± θ
(
p2 + (1 ∓ 1)m2

±
)]

+ (p2 + (θ ± m±)2)
[
p2(θ ± m±) + m2

±(m± ∓ θ) − θ2m±
]

× I (p, θ + m±) − (
p2 + m2

±
)2

(θ ± m±)I (p,m±)
}
,

PV
± (p; ξ) = 1

p2 + m2±
+

αξm±
(
m2

± − p2
)

2p2
(
p2 + m2±

)2 − αξ

2p2
I (p,m±)

+
α

2p2θ2
(
p2 + m2±

)2

{
θ
[(

p2 − m2
±
) (

p2 + m2
± + θ2)

∓ θm±
(
(2 ± 1)p2 + (2 ∓ 1)m2

±
)]

+ (p2 + (θ ± m±)2)
[(

p2 + m2
± − θ2)(p2 − m2

±
) ∓ 4p2θm±

]
× I (p, θ + m±) − (

p2 + m2
±
)2(

p2 − m2
± ∓ 2θm±

)
I (p,m±)

}
.

(31)

The gauge-dependent terms exactly match the LKFT results expanded in the weak coupling
limit, as expected. Furthermore, the gauge-independent terms as compared to those in
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Figure 1. Scalar and vector projections of the fermion propagator in various gauges. The scale is
set by the value of e2 = 1 and we have chosen me = 1,mo = 0.2 and θ = 0.4.

equation (21) exhibit a more intricate dependence on the topological parameter θ . These
cannot be derived from the LKFT of the tree-level fermion propagator alone.

4.5. Numerical results

In perturbation theory, higher order terms in the expansion parameter α are smaller than
the lower order terms. Naturally, one wonders about how far the one-loop result would
be as compared to the non-perturbative one obtained from the LKFT in quantitative terms.
In figure 1, we have drawn the scalar and vector projections of the fermion propagator in
various gauges arising from: non-perturbative LKF analysis, equation (12) and the one-loop
perturbative treatment, equation (31). The additional gauge parameter independent terms in the
one-loop results, which are absent in the weak coupling expansion of the LKFT expressions,
seem to play a noticeable role in the infra red. With increasing momentum, their contribution
diminishes as both the expressions in equation (12) and equation (31) start merging into each
other, a statement that seems to hold true in arbitrary covariant gauges.

5. Conclusions

We have derived a non-perturbative expression for the fermion propagator in Maxwell–
Chern–Simon QED3 through its LKF transformation, starting from its tree-level expression.
Equation (12) displays one of the main results of this paper. The LKFT of the fermion
propagator is written entirely in terms of basic functions of momentum, parity-even and
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parity-odd bare masses. Although our input is merely the bare propagator, its LKFT, being
non-perturbative in nature, contains useful information of higher orders in perturbation theory.
All the coefficients of the (αξ)i at every order are correctly reproduced without ever having
to perform loop calculations. In the weak coupling regime, LKFT results match the one-
loop perturbative results derived from the Lagrangian (1) up to gauge-independent terms, a
difference allowed by the structure of the LKFT. This difference arises due to our approximate
input, and can be systematically removed at the cost of employing a more complex input which
would need to be calculated by the brute force of perturbation theory.
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Appendix

The following trace identities are fulfilled by the χ± projectors

Tr[χ±] = 2

Tr[γ μχ±] = 0

Tr[γ μγ νχ±] = −2δμν

Tr[γ μγ νγ αχ±] = ∓2εμνα

Tr[γ μγ νγ αγ βχ±] = 2(δμνδαβ − δμαδνβ + δμβδνα).

(A.1)
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